Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

Identifieur interne : 001C70 ( Main/Exploration ); précédent : 001C69; suivant : 001C71

Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

Auteurs : Yixing Zhang [États-Unis] ; Praveen V. Vadlani [États-Unis]

Source :

RBID : pubmed:25561329

Descripteurs français

English descriptors

Abstract

Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics.

DOI: 10.1016/j.jbiosc.2014.10.027
PubMed: 25561329


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.</title>
<author>
<name sortKey="Zhang, Yixing" sort="Zhang, Yixing" uniqKey="Zhang Y" first="Yixing" last="Zhang">Yixing Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vadlani, Praveen V" sort="Vadlani, Praveen V" uniqKey="Vadlani P" first="Praveen V" last="Vadlani">Praveen V. Vadlani</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA. Electronic address: vadlani@ksu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25561329</idno>
<idno type="pmid">25561329</idno>
<idno type="doi">10.1016/j.jbiosc.2014.10.027</idno>
<idno type="wicri:Area/Main/Corpus">001E55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E55</idno>
<idno type="wicri:Area/Main/Curation">001E55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E55</idno>
<idno type="wicri:Area/Main/Exploration">001E55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.</title>
<author>
<name sortKey="Zhang, Yixing" sort="Zhang, Yixing" uniqKey="Zhang Y" first="Yixing" last="Zhang">Yixing Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vadlani, Praveen V" sort="Vadlani, Praveen V" uniqKey="Vadlani P" first="Praveen V" last="Vadlani">Praveen V. Vadlani</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA. Electronic address: vadlani@ksu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of bioscience and bioengineering</title>
<idno type="eISSN">1347-4421</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Bioreactors (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Catabolite Repression (MeSH)</term>
<term>Cellulose (metabolism)</term>
<term>Coculture Techniques (MeSH)</term>
<term>Ethanol (metabolism)</term>
<term>Fermentation (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Lactic Acid (biosynthesis)</term>
<term>Lactobacillus brevis (growth & development)</term>
<term>Lactobacillus brevis (metabolism)</term>
<term>Lactobacillus plantarum (growth & development)</term>
<term>Lactobacillus plantarum (metabolism)</term>
<term>NAD (metabolism)</term>
<term>Polysaccharides (metabolism)</term>
<term>Xylose (metabolism)</term>
<term>Zea mays (chemistry)</term>
<term>Zea mays (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide lactique (biosynthèse)</term>
<term>Biomasse (MeSH)</term>
<term>Bioréacteurs (MeSH)</term>
<term>Cellulose (métabolisme)</term>
<term>Fermentation (MeSH)</term>
<term>Glucose (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Lactobacillus brevis (croissance et développement)</term>
<term>Lactobacillus brevis (métabolisme)</term>
<term>Lactobacillus plantarum (croissance et développement)</term>
<term>Lactobacillus plantarum (métabolisme)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>NAD (métabolisme)</term>
<term>Polyosides (métabolisme)</term>
<term>Répression catabolique (MeSH)</term>
<term>Techniques de coculture (MeSH)</term>
<term>Xylose (métabolisme)</term>
<term>Zea mays (composition chimique)</term>
<term>Zea mays (métabolisme)</term>
<term>Éthanol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lactic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
<term>Ethanol</term>
<term>Glucose</term>
<term>NAD</term>
<term>Polysaccharides</term>
<term>Xylose</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acide lactique</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Lactobacillus brevis</term>
<term>Lactobacillus plantarum</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Lactobacillus brevis</term>
<term>Lactobacillus plantarum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lactobacillus brevis</term>
<term>Lactobacillus plantarum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Glucose</term>
<term>Lactobacillus brevis</term>
<term>Lactobacillus plantarum</term>
<term>NAD</term>
<term>Polyosides</term>
<term>Xylose</term>
<term>Zea mays</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Bioreactors</term>
<term>Carbohydrate Metabolism</term>
<term>Catabolite Repression</term>
<term>Coculture Techniques</term>
<term>Fermentation</term>
<term>Hydrolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Bioréacteurs</term>
<term>Fermentation</term>
<term>Hydrolyse</term>
<term>Métabolisme glucidique</term>
<term>Répression catabolique</term>
<term>Techniques de coculture</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25561329</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1347-4421</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>119</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bioscience and bioengineering</Title>
<ISOAbbreviation>J Biosci Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.</ArticleTitle>
<Pagination>
<MedlinePgn>694-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jbiosc.2014.10.027</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1389-1723(14)00435-6</ELocationID>
<Abstract>
<AbstractText>Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. </AbstractText>
<CopyrightInformation>Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yixing</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vadlani</LastName>
<ForeName>Praveen V</ForeName>
<Initials>PV</Initials>
<AffiliationInfo>
<Affiliation>Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA. Electronic address: vadlani@ksu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Biosci Bioeng</MedlineTA>
<NlmUniqueID>100888800</NlmUniqueID>
<ISSNLinking>1347-4421</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>33X04XA5AT</RegistryNumber>
<NameOfSubstance UI="D019344">Lactic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8024-50-8</RegistryNumber>
<NameOfSubstance UI="C007916">hemicellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>A1TA934AKO</RegistryNumber>
<NameOfSubstance UI="D014994">Xylose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019149" MajorTopicYN="Y">Bioreactors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="Y">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057465" MajorTopicYN="N">Catabolite Repression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018920" MajorTopicYN="N">Coculture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="Y">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019344" MajorTopicYN="N">Lactic Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052196" MajorTopicYN="N">Lactobacillus brevis</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048191" MajorTopicYN="N">Lactobacillus plantarum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014994" MajorTopicYN="N">Xylose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Co-culture</Keyword>
<Keyword MajorTopicYN="N">Corn stover</Keyword>
<Keyword MajorTopicYN="N">Lactic acid</Keyword>
<Keyword MajorTopicYN="N">Lactobacillus brevis</Keyword>
<Keyword MajorTopicYN="N">Lactobacillus plantarum</Keyword>
<Keyword MajorTopicYN="N">Poplar hydrolyzate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25561329</ArticleId>
<ArticleId IdType="pii">S1389-1723(14)00435-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.jbiosc.2014.10.027</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kansas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Kansas">
<name sortKey="Zhang, Yixing" sort="Zhang, Yixing" uniqKey="Zhang Y" first="Yixing" last="Zhang">Yixing Zhang</name>
</region>
<name sortKey="Vadlani, Praveen V" sort="Vadlani, Praveen V" uniqKey="Vadlani P" first="Praveen V" last="Vadlani">Praveen V. Vadlani</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25561329
   |texte=   Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25561329" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020